Uploaded with ImageShack.us

domingo, 10 de octubre de 2010

Dependencia Lineal De Dos Funciones


y1(x) y y2(x) son linealmente dependientes en un intervalo abierto, donde ambas estan definidas si son proporcionales en dicho intervalo esto es:
si y1=k1y2 o y2=k2y1
donde:
k1 y k2 son constantes.
INDEPENDENCIA LINEAL
Si y1(x) y y2(x) son proporcionales en el intervalo son linealmente independientes en el mismo.
si y1/y2 es una constante entonces las funciones son linealmente dependientes.
Si y1/y2 es una función de x, entonces las funciones son linealmente independientes.
ejemplos:
1).- y1=x y2=2x
          y1/y2=x/2x=1/2



            entonces es linealmente dependientes
2).- y1=℮−2x y2=1/4℮−2x
          y1/y2= ℮−2x/1/4℮−2x=4



            entonces es linealmente dependiente
3).- y1=7 y2=x2
          y1/y2=7/x2

No hay comentarios:

Publicar un comentario