Uploaded with ImageShack.us

sábado, 9 de octubre de 2010

Clasificación De Las Ecuaciones Diferenciales


ORDINARIAS Y PARCIALES
Para desarrollar sistemáticamente la teoría de las ecuaciones diferenciales, es útil clasificar los diferentes tipos de ecuaciones. Una de las clasificaciones mas obvias se basa en si la función desconocida depende de una o de varias variables independientes. En el primer caso solo aparecen derivadas ordinarias en la ecuación diferencial y se dice que es ecuación diferencial ordinaria. En el segundo caso, las derivadas son parciales y la ecuación se llama ecuación diferencial parcial.
Ejemplos de las ecuaciones diferenciales ordinarias:
ORDEN.
El orden de una ecuación diferencial ordinaria, es igual al de la derivada de más alto orden que aparece en la ecuación. Por lo tanto, la ecuación (1) y (2) son ecuaciones diferenciales ordinarias de segundo orden.
El orden de una ecuación diferencial (ordinaria o en derivadas parciales) es el de la derivada de mayor orden en la ecuación. Por ejemplo,
d2y + 5 [dy]3 - 4y = ex
dx2 dx
es una ecuación diferencial de segundo orden.
             GRADO.
Es la potencia a la que esta elevada la derivada mas alta, siempre y cuando la ecuación diferencial este dada en forma polinomio.
Hay otra clasificación importante de las ecuaciones diferenciales ordinarias la cual se basa en si éstas son lineales o no lineales. Se dice que la ecuación diferencial
Es lineal cuando F es una función lineal en las variables y,y´,y(n). Por lo tanto, la ecuación diferencial ordinaria lineal de orden n es . 3.-
La ecuación que no es de la forma (3), es un ecuación no lineal.
Un problema físico sencillo que de origen a una ecuación diferencial no lineal es el péndulo oscilante.
ecuación Diferencial Lineal
La forma general de una ecuación diferencial lineal de orden n es como sigue:
an(x)dny + a n-1(x) d n-1y + ... + a1(x)dy +a0(x)y = g(x)
dxn dx n-1 dx
Recuérdese que linealidad quiere decir que todos los coeficientes solo son funciones de x y que y todas sus derivadas están elevadas a la primera potencia. Entonces, cuando n = 1, la ecuación es lineal y de primer orden.

No hay comentarios:

Publicar un comentario